

from UK. White boxes show plastic and green boxes show leaves.

Further object labelling and inputting into the algorithm would be useful to obtain more detail regarding these debris fluxes.

aves	Total
31	1177

Background to the

approach used:

Humans have limitations, like limited memory and attention span, which intelligent agents and artificial intelligence may alleviate¹.

Object detection predictions locations through bounding boxes as well as classifying the different objects².

YOLO trains on full-sized images and optimises performance. Fast YOLO is the quickest object detector in literature³.

References:

1 Tecuci, G. (2012) Artificial Intelligence, WIREs Comput Stat, 4, 168-180. 2 Huang, R., Pedoeem, J., & Chen, C. (2019). YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers. Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, 2503–2510. <u> https://doi.org/10.1109</u> . Accessed September 2019. 3 Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. Retrieved from <u>http://arxiv.org/abs/1804.02767</u>. Acc<u>essed</u> September 2019.